
Analysis of Optimistic Window-based

Synchronization �

Phillip M. Dickens

ICASE

David M. Nicol

College of William and Mary

Paul F. Reynolds, Jr.

University of Virginia

J. M. Duva

University of Virginia

April 11, 1994

Abstract

This paper studies an analytic model of parallel discrete-event simulation, compar-

ing the costs and bene�ts of extending optimistic processing to the YAWNS synchro-

nization protocol. The basic model makes standard assumptions about workload and

routing; we develop methods for computing performance as a function of the degree

of optimism allowed, overhead costs of state-saving, rollback, and barrier synchroniza-

tion, and LP aggregation. This allows an approximation-based analysis of the range

of situations under which optimism is a bene�cial extension to YAWNS. We �nd that

limited optimism is bene�cial if the processor load is sparse, but that aggregating LPs

onto processors improves YAWNS relative performance.

�This work was supported by the National Aeronautics and Space Administration under NAS1-19480

while Dickens and Nicol were in residence at the Institute for Computer Applications in Science and En-

gineering (ICASE), NASA Langley Research Center, Hampton, VA 23681. Nicol's work was additionally

supported by Carleton College while he was resident as a visiting research associate, and by NSF grant

CCR-9201195.

i

1 Introduction

Discrete-event simulations model physical systems. The literature on parallel discrete-event

simulation (PDES) usually views a physical system as a set of communicating physical

processes, each of which is represented in the simulation by a logical process (LP). LPs

communicate through time-stamped messages re
ecting changes to the system state. A

time-stamp re
ects an instant where a state change occurs in the physical process model.

Parallel discrete event simulation poses di�cult synchronization problems, due to the

underlying sense of logical time. Each LP maintains its own logical clock representing the

time up to which the corresponding physical process has been simulated. The fundamental

problem is to determine when an LP may execute a known future event, and in so doing

advance its logical clock. If an LP advances its logical clock too far ahead of any other

LP in the system it may receive a message with a time-stamp in its logical past, called a

straggler. The threat of stragglers is dealt with by saving the simulation state periodically,

and rolling back as appropriate when a straggler arrives . Messages sent at times ahead of

the straggler's time-stamp must be undone. Fundamental problems of PDES are reviewed

in Misra (1986), Fujimoto (1990), Righter and Walrand (1989). Nicol and Fujimoto (1994)

give a more current state-of-the-art review.

Most PDES synchronization protocols fall into two basic categories. Conservative pro-

tocols (e.g. Chandy and Misra 1979, Bryant 1979, Peacock, Wong and Manning 1979,

Lubachevsky 1988, Chandy and Sherman 1989 and Nicol 1993) do not allow an LP to pro-

cess an event with time-stamp t if one is unable to assert that it will not receive another

event with time-stamp less than t at some point in the future. Optimistic protocols (e.g.

Time Warp, Je�erson (1985)) allow an LP to process an event before it is known for certain

that the LP will not later need to process an event with earlier time-stamp. Causality errors

are corrected through a rollback mechanism. A more careful taxonomy of protocol charac-

teristics is detailed in Reynolds (1988); in keeping with standard (but imprecise) practice,

we will speak in terms of conservative and optimistic protocols.

The earliest synchronization protocols are asynchronous|an LP synchronizes solely on

the basis of interactions with LPs with which it directly communicates. Recently more

synchronous protocols have attracted interest. While details vary, the basic idea is to in-

corporate barrier synchronizations and global reductions on functions of future simulation

times. Examples include Moving TimeWindow (Sokol et al. 1988), Conservative TimeWin-

dows (Ayani and Rajaei, 1992), Conditional Events (Chandy and Sherman, 1989), Bounded

Lag (Lubachevsky, 1988), Synchronous Relaxation (Eick et al., 1993), Bounded Time Warp

(Turner and Xu, 1992), Breathing Time Buckets (Steinman, 1991), and YAWNS(Nicol,

1993). The advantage to a conservative protocol is that synchronization information moves

quickly through the system, lowering overhead costs. This e�ciency usually comes at the

1

t t+C t+A

window
conservative

window
optimistic

simulation time

Figure 1: Extended YAWNS window is comprised of one conservative and one optimistic

subwindow.

price of more pessimistic synchronization, e.g., an LP A may block against the threat of a

receiving a message at time t, whereas the threatened message is actually from LP B to LP

C. The global mechanisms allow for e�cient computation of simulation times, like t, but do

not handle routing details well. The advantage to an optimistic protocol is the elimination of

a separate GVT (Global Virtual Time) calculation, and the reduction of the risk of cascading

rollbacks. As for the conservative methods, the price paid is the reduction of asynchrony,

and more limited opportunities for parallelism.

Our interest is in the conservative YAWNS protocol, and in determining conditions un-

der which it makes sense to extend it by incorporating optimism. YAWNS conservatively

constructs a window of simulation time within which events on di�erent processors may be

concurrently simulated (details follow in Section 2). This conservative window tends to be

small. However, under the YAWNS mechanism, an LP that executes an event outside of

the window risks receiving a straggler message. We extend optimism to YAWNS by ap-

pending an optimistic window to the conservative window; when an LP executes events in

the optimistic window it must be prepared to deal with straggler messages. The advantage

is to increase the number of events processed per window, in hopes of lowering the amor-

tized cost of of computing and synchronizing at the window. The cost of the extension is

due to state-saving, rollback, and additional global synchronization. The basic form of the

extension is illustrated in Figure 1|at simulation time t all LPs use the standard YAWNS

mechanism to compute the conservative window [t; t + C), but also append an optimistic

window [t + C; t + A). Processors synchronize globally at simulation time t + A. For our

purposes we take A as a user-speci�ed parameter that governs the degree to which optimistic

execution is permitted. We will call the method YOW (YAWNS Optimistic Window).

We �nd that there is a best optimistic window size that is much larger than YAWNS's.

We derive formulas for YAWNS' and YOW's performance as a function of synchronization,

state-saving, and event-reprocessing costs. Using these we determine that when the problem

is sparse|one �ne-grained LP per processor|then asymptotically (as the number of LPs

2

increases) then YOW prevails. However, if we �x the size of the architecture and aggregate

LPs onto processors, then YAWNS can prevail.

The remainder of the paper is organized as follows. Section 2 describes our analytic model

and its relationship to others in the literature. Section 3 develops methods for approximating

the probability distribution of an LPs workload, included reprocessed messages due to roll

backs. Section 4 applies those approximations to compare conservative YAWNS with its

optimistic extension, and Section 5 presents our conclusions.

2 Model

Our analysis is of a parallelized queueing network simulation. LPs represent servers, and

events occur when jobs either enter service, or are received by a queue. A job's random

service time increases its LP's simulation clock by the service amount. Event processing

cannot be interrupted; furthermore a job's post-service destination is presumed to be known

at the time it enters service. The destination is chosen uniformly at random from the set of

all LPs. We do assume that the data content and next destination of a serviced job depend

upon the contents and times of all jobs received by the LP prior to the event entering

service. Because of this, a message reporting the job's arrival at its new destination is sent

to its recipient at the time the job enters service. This is called pre-sending the job, and

is an important aspect of both YAWNS and Time Warp. A message has both a send-time

and receive-time, corresponding to the service-entry and service departure times. Service

time (re
ecting an advancement in simulation time) is also random, and is exponentially

distributed with rate �s. We assume that the cost of processing a service-entry event or a

job arrival event is unity; our expression of physical execution times will be in these units.

While simple, models like there are the basis for several analytic studies. This model is

similar to the one studied by Gupta, Akildiz and Fujimoto (Gupta et al.,1991) (which we'll

refer to as GAF) in their study of asynchronous Time Warp. The main di�erences are that

we assume unit cost for executing an event and the GAF model assumes an exponentially

distributed execution cost; that our model is basically that of a queueing system with single

servers and a non-preemptive queuing discipline whereas the GAF model is of a queuing

system with in�nite servers; our model indirectly re
ects the e�ects of communication delay,

and the GAF model assumes instantaneous communication. These di�erences are signi�cant

enough to prevent us from quantitively comparing our model results to GAF's. We do note

that GAF's assumption of random event costs should tend to worsen performance over our

model, but the instantaneous communication and in�nite servers should tend to improve

it over ours. Furthermore, one increases the available parallelism in the GAF model by

increasing the number of messages; in our model one must increase the number of LPs.

3

Our model is also loosely related to the self-initiating model studied by Nicol (1991), and

is subsumed by Nicol's message-initiating model in his study of YAWNS (Nicol, 1993). The

former model concentrates on the e�ects of fan-outs greater than one, and ignores the e�ects

of rollback; the latter model provides the analysis of YAWNS that we use in this paper. The

bonding model of Eick et al. (1993) is closely related to ours, in that it essentially describes

the behavior of a parallelized queuing simulation identical to ours except that a message

describing a job's departure is sent only at the simulation instant when the job departs|

we assume the message is sent at the time the job enters service. Another di�erence is

that we assume that a re-executed event may send its subsequent message to a di�erent

LP than before, whereas the bonding model assumes it is directed to the same LP. Finally,

the randomly uniform routing assumption is shared by the model studied by Felderman and

Kleinrock (1991), who make di�erent assumptions concerning time-stamp advancement and

event execution time.

Our analysis is unique in several ways. First, nearly all of the afore-mentioned models

regard communication, state-saving, and synchronization as negligible. We believe that

these same costs largely de�ne which synchronization approach is best suited for a problem,

and so should be explicitly incorporated in the model. Secondly, our analysis is of an

optimistic window-based scheme where performance depends on the level of optimism; in

this regard only Eick et al.'s model is similar. Our analytic approach is di�erent, but can

also be extended to the Eick et al. model. While we apply the model to the problem

of extending YAWNS, the approach applies more generally to the analysis of window-based

optimistic protocols. Finally, only the analysis in Nicol (1993) considers the bene�cial e�ects

of aggregating LPs; as we shall see, this consideration can make it more advantageous to

fore-go optimism in a su�ciently aggregated case, whereas optimism is better in the non-

aggregated case.

Our analytic approach is computational and is based on simplifying approximations.

We develop an intuitive approximation to the probability distribution of the number of

events processed by an LP while executing a window. The workload distribution includes

reprocessed events induced by rollbacks. With this distribution as a basis we add overhead

costs, and compute the average execution cost (in real time) per unit simulation time.

Before proceeding to the analysis, it is useful to review the YAWNSmechanism. Presume

that all LPs have executed all events up to simulation time t. Under the assumptions that

permit pre-sending messages, each LP i can examine its state and predict the departure time

di(t) of the next job to receive service, excluding the one receiving service at t, assuming

no further message arrivals at i prior to that job entering service. This sort of lookahead is

called conditional knowledge by Chandy and Sherman (1989), because the validity of di(t) is

conditional. Using standard minimum reduction techniques, the LPs can quickly compute

w(t) = minifdi(t)g; the conservative YAWNS window is [t; w(t)). By construction, no job

4

entering service during the [t; w(t)), window also departs service. Coupling this feature with

message pre-sending, no message generated by an event in [t; w(t)) has a receive time in

[t; w(t)).

We extend optimism to YAWNS by requiring that LPs synchronize at the upper edge of

the optimistic window. The same min-reduction as before is used to synchronize, only now

the result w(t) indicates the upper edge of a \safe region" into which no straggler message will

ever venture. Only one global synchronization is needed per window|a min-reduction serves

both to synchronize the processors at some time t, and to compute w(t). The processors

know to synchronize again at time t + A. No state-saving need be performed prior to any

event in the conservative window.

One essential di�erence between YOW and Bounded Time Warp (Turner 1992) is the

computation and exploitation of the conservative window. Another is the proposed syn-

chronization mechanism. Special care must be taken when synchronizing at t+ A since an

LP may simulate up to that time but then be rolled back. Bounded Time Warp proposes

an essentially linear time (in the number of LPs) termination detection mechanism. More

e�cient methods can be supported in hardware (Reynolds et al. 1993), or using special

algorithms in software (Nicol 1993a). Our model presumes Nicol's software solution.

We assume that an event at LP i which is reprocessed due to rollback randomly selects

a new destination with each reprocessing. This re
ects the assumption that a message's

content and destination is a sensitive function of the complete message history at LP i up to

the time where the job enters service. Thus two messages are generated upon reprocessing

an event, an anti-message to cancel its previous routing and a new routing message sent

to another (probably di�erent) LP. Like other analyses of Time Warp, we assume that the

anti-message exacts no computational cost at either the sender or receiver. However, our

model will not assume that an anti-message is received instantaneously. We do not model

the message delay directly, but rather model the e�ects of such a delay.

3 Analysis

Within any given window of width A, an LP will execute (and re-execute) a random number

of events, say W . This random variable (like all others in our analysis) depends on A, but

this dependence will not be expressed in the notation. Our initial goal is to determine the

probability distribution of W ; note that this distribution is the same for all LPs under the

uniformity assumptions made. Given the distribution, we can add overhead and execution

costs, and determine the mean time �A required to complete the window by the processor

requiring the longest time to do so. �A=A serves as our metric, measuring the average

execution time required per unit simulation time.

5

We focus on \generations" of messages, a notion which arises as follows. Imagine that

LPs synchronize at t, and then each executes all known events in the window without paying

any attention to any possible communications. The set of messages sent during the �rst

sweep with time-stamps in [t; t+ A) are in generation 1. Imagine now that an LP gathers

up all the generation 1 messages sent to it, and processes them. These must cause rollback,

anti-messages, and new routing messages. The set of all anti-messages and new routing

messages are in generation 2. In general, a message is in generation i + 1 if it is the direct

result of a rollback caused by a generation i message. We denote the random number of

generation i messages received by an LP as Gi, and denote by Ri the random number of

events processed as a result of receiving generation i messages.

We assume that A is small enough and the message density is high enough to ignore the

possibility of a job received in [t; t+A) going into service in that same window. Under this

assumption, the number and times of all service-entry events during [t; t + A) are known

after the LPs synchronize at t, and remain unaltered (except for destination and content)

while processing [t; t+A). The number of such events at a given LP is a random variable S

that is Poisson distributed with mean A�s. All other events are job arrivals, of which there

are J , which is also Poisson with mean A�s.

Event reprocessing costs depend on how quickly the parallel simulator receives and reacts

to straggler messages. For example, the analysis of Gupta et al. (1991) assumes zero message

transmission delay, and that rollback occurs immediately following the complete processing

of whatever event is being served at the instant the straggler message arrives. If two or

more stragglers arrive during that processing time, the reprocessing e�ect is as though only

the straggler with least time stamp was received, others exact no additional cost. But now

consider the e�ect a communication delay may have on the algorithm. If A is small enough

an LP will have few events in a window; in the time it takes a message to travel between

processors, the recipient LP will already be ready to synchronize at time t + A. Even if

communication is faster it is frequently the case (and we have observed empirically on actual

applications) that the cost of probing for new messages after each event is prohibitively high

on distributed memory architectures, because such a probe involves a system call. To model

this e�ect, we assume that if a straggler message is received at some time s 2 [t; t+A) then

the e�ect of that straggler is to re-execute all events at that LP from s to t+A, and to send

anti-messages after all messages generated previously by those events. If an LP receives

k generation i stragglers, we assume that each is processed serially, incurring k separate

recomputation costs. This assumption is reasonable so long as an LP has only a few events

in a window.

If we de�ne generation 0 messages as corresponding to the service entry events and job

arrival events, we write R0 = S+J , and express the total number of events processed in the

6

window by

W =
1X
i=0

Ri:

The distribution of each reprocessing cost Ri depends on the number and time-stamps

of generation i messages. The actual distributions for these messages are untractably com-

plicated, so we will approximate. For generations i > 1, we assume that Gi has a Poisson

distribution. Such an assumption is standard, since given a total number N generation i� 1

messages, the number arriving at an LP is binomial B(N; 1=P), P being the number of LPs.

Binomials with large N and small probabilities of success are frequently modeled as Poisson.

We also approximate the distributional form of the random arrival time of a generation

i message. Each such message corresponds to a service-entry event in some LP; the arrival

time is the service-entry time plus an exponential. Each service entry event has some rank

re
ecting whether it is the �rst, second, or so on service entry event in [t; t+A), on its LP.

The arrival time distribution of the message sent by the ith service entry event following time

t is t plus the convolution of i+1 i.i.d. exponentials, i.e., an Erlang-(i+ 1); we say that the

arrival message has rank i+1. We will have occasion to condition on the service-entry event

lying in [t; t+A), in which case the message's arrival time distribution is suitably modi�ed.

In order for such a message m to be sent (in generations > 0), the ith service entry event

must be reprocessed, implying the arrival of an earlier straggler|information that alters

m's arrival time distribution. Our model does not attempt to capture this distributional

dependency. Under our simplifying assumption then, every generation i arrival message in

[t; t+ A) has a time-stamp whose distribution is t, plus some Erlang conditioned on being

less than A. Let ai;k denote the mean fraction of generation i messages that have rank k.

Letting ~fk(s) be the density function for an Erlang-k conditioned on being less than A, we

approximate the arrival time density function of an arbitrary generation i message as the

mixture t+
P
1

k=2 ai;k
~fk(s).

Table 1 summarizes our notation. All random quantities are LP-oriented, rather than

system-oriented.

It remains to determine weighting factors fai;kg and the distributions for W , Gi, and

Ri. The approach is to condition on S + J = k, and determine distributions for Gi, Ri,

and W suitably conditioned, call them Gi(k), and Ri(k), and W (k). Assuming that all

arrival messages are independent of each other, we compute W (k) =
P
1

i=0Ri(k), because

the individual random variables in the convolution will be independent. It is straightforward

then to uncondition on S + J (since S and J are independent and Poisson). The values for

E[Gi] and fai;kg can be built up with increasing i, as will be shown.

Let us �rst consider E[G1]. A generation 1 message arises whenever a service-entry event

in [t; t+A) sends an arrival message with time-stamp less than t+A (all other arrival events

were sent by service entry events in previous windows). If we condition on S = k service-

7

W Total events processed in a window

S Service entry events in a window

J Job arrival events

�s Service rate for queue server

Gi Generation i arrival messages received

Ri Events reprocessed by all generation i arrivals

ri Events reprocessed by single generation i arrival

ai;j Fraction of generation i arrivals with rank j
~fj(s) Density function of Erlang-j conditioned on s � A

Fj(s) Cummulative distribution function for Erlang-j

B(n; p) A binomial random variable with parameters n and p

Hj(s) Cummulative distribution function of Erlang-j conditioned

on sum of �rst (j � 1) stages being less than A

Table 1: Summary of Notation

entry events in [t; t+A), the joint distribution of their times in [t; t+A) is identical to that

of k independent [t; t+ A] uniform random variables (Ross 1983, pg. 37). Choosing one of

these k uniformly at random, the probability that its arrival message lies outside of [t; t+A)

is given by

PrfArrival message time for service entry event > t+A j S = kg =
Z t+A

t

1

A
e��sv dv

=
1:0� e��sA

A
:

This leads to the observation that the mean number of arrival messages generated in [t; t+A)

that fall outside of [t; t+A) is 1:0� e��sA. Since the mean total number of arrival messages

generated in [t; t+A) is �sA, we obtain

E[G1] = �sA� (1:0� e��sA):

Values for the fa1;kg are also easily derived. For an arrival message to be of rank j it

is necessary that the Erlang associated with its arrival time t+ a be less than t+ A. From

Bayes Theorem we obtain

a1;j = PrfA generation 1 arrival message in [t; t+A) has rank j � 2g

= Prf a � Erlang-j j a < A g

=
Fj(A)P
1

k=2 Fk(A)
for j � 2;

8

where Fk is the cumulative distribution of an Erlang-k with rate parameter �s.

We now turn to the analysis for higher generations. Suppose E[Gi] and the values fai;jg

are known for generation i; condition on S + J = k and consider the distribution of Ri(k).

Under our assumptions, an arrival at time t + v 2 [t; t + A) will cause the reprocessing of

every known arrival event and service-entry event with time-stamp between t+ v and t+A.

Given S + J = k we view the placement in time of events on [t; t+A) as that of k uniforms

on [t; t+ A] (Ross 1983, pg.37). As a consequence, the number of events reprocessed by a

rollback-inducing arrival at time t + v has the distribution of a Binomial B(k; (A� v)=A),

representing the sum of k Bernoullis with success probability (A� v)=A. Coupling this fact

with the assumed distributional form of generation i messages we compute

Prfn events reprocessed by generation i message j J = kg =Z A

v=0

1X
j=2

ai;j ~fj(v) PrfB(k; (A� v)=A) = ngdv: (1)

Equation (1) approximates the distribution of random variable ri(k), the random number

of events reprocessed by a single generation i message, conditioned on S + J = k. We

ignore here the fact that the arrival message is itself an arrival event, and that the set of

known arrival events is continuously in
ux through successive generations. Accepting this

we compute the distribution of Ri(k) as the random convolution ofM independent instances

of ri(k), M being Poisson with rate E[Gi].

Values fai;jg are computed in a similar fashion. If we condition on a generation i arrival

at time t+v and condition on there being m service-entry events in [t; t+A), then the number

of these falling between t+ v and t+A is binomial. The probability that a generation i+ 1

message of rank j is generated by this arrival is zero if there aren't enough service-entry

events, i.e., if j�1 > m. Otherwise it is the probability that the (j�1)st service-entry event

occurs after v, and that the message it generates falls within [t; t+A). This gives

bi+1;j(m) = Prfgeneration i message creates a rank j generation i+ 1 message j S = m g

= Hj(A)�
Z A

v=0

1X
j=2

ai;j ~fj(v) PrfB(m; v=A) > j � 1gdv (2)

where we recall that Hj is the cumulative distribution function of an Erlang-j conditioned on

the sum of its �rst j�1 exponential stages being less than A. Hj(A) gives us the probability

that a reprocessed rank-(j�1) service-entry event produces a message in the next generation.

Figure 2 helps to explain these ideas. A situation with S = 5 is shown, where an arrival

message at time t + v falls ahead of the �rst three service entry events. The service entry

events ahead of the arrival have ranks 4 and 5 respectively. Arcs illustrate the send/receive

time di�erence between the messages sent by the reprocessed events; the rank 4 event message

9

S = 5

54321j =

t t+A

t+v

Figure 2: Reprocessing of a rank 4 service-entry event generates a rank 5 message for the

next generation.

falls within the window, the rank 5 event message does not. In order for there to be a rank

5 message generated, the 4th ranked service event must lie to the right of v, as must the

receive time of its message. The distribution of that receive time is an exponential added to

the distribution of 4th service event, the latter of which is a conditional Erlang-4.

For each rank j let bi+1;j be the result of unconditioning equation (2) on S. Then, recalling

that each reprocessed service-entry event generates two messages (assumed to have the same

time-stamp), the mean number of generation i+1 messages with rank j is 2�E[Gi]� bi+1;j,

and the coe�cients fai+1;jg are given by

ai+1;j = E[Gi]

bi+1;jP
1

k=2 bi+1;k

!
:

Finally, the mean number of arrival messages in the next generation is simply

E[Gi+1] = 2
1X
k=2

bi+1;k:

Using these recursions one may, for every S+J = k, compute the distribution of Ri(k), for

all generations i = 1; 2; Conditioned on S+J = k, the random variables R0(k); R1(k); . . .

may be taken to be independent (because the processes driving them are highly randomized

arrivals from elsewhere), whence we may compute the distribution of the convolutionW (k) =P
1

i=0Ri(k). Finally, knowing this distribution for each S+J = k, we compute the distribution

of W by unconditioning on S + J (known to be Poisson).

Of course, any computer program calculating these distributions must truncate the in-

�nite sums. Taking �s = 1, we have found that summing over the �rst twelve generations

yields accurate numbers when A 2 (0; 2�s).

The distribution of W describes the workload of a single LP, in terms of the numbers of

events processed. With large numbers of LPs and the randomizing message routing, we may

treat the LP workloads as being independent random variables. Under this assumption it is

10

straightforward to express the expected maximum workload among N LPs. Letting MN (A)

be the maximum workload, we know that for every non-negative integer w

PrfMN (A) � wg = PrfW � wgN

so that

E[MN (A)] =
1X
w=0

PrfMN (A) > wg

=
1X
w=0

(1:0� PrfW � wgN):

Numerical problems may arise computing yx when y is small and x is large; a good

approximation for E[MN(A)] is the so-called characteristic maximum, used for instance in

Eick et al. (1993). Given N , the characteristic maximum of W is the smallest value wc such

that PrfW > wcg < 1=N . Since W is discrete, we further re�ne the estimate with linear

interpolation of W 0s cumulative distribution function between wc and wc � 1, in essence

creating a continuous version ~W and solving for ~wc such that Prf ~W > ~wcg = 1=N . ~wc

estimates E[MN(A)].

The utility of our model is illustrated by Figure 3, where we compare model predictions of

E[M64(A)] and E[M1024(A)] with measurements (from simulation of our model) for varying

values of A. Each measurement point is estimated from one hundred window replications.

As our purpose is only to ensure that the model captures general trends we omit con�dence

intervals. We see that the model predicts performance tolerably well over a range where the

predictions span a factor of ten between smallest, and largest, although there is a breakdown

at the larger end.

It is also instructive to consider how the fraction of committed events (those events that

are not later reprocessed) behaves as a function of A. This is illustrated in Figure 4, where we

plot the ratio of the expected maximum committed workload on a processor to the expected

maximum total workload, for 64 and 1024 LPs. For both curves shown, the fraction of useful

work decreases linearly in A after a certain point. This suggests that under the assumptions

of our model, it does not make sense to increase A inde�nitely. This is explained in the

section to follow.

4 Comparison with YAWNS

It is instructive to consider how E[MN (A)] behaves as a function of A. E[MN (A)] is basically

the product of three terms, (i) the number of message generations required until all LPs have

�nished the window, (ii) the average number of rollbacks per generation, (iii) the average

11

0.0 0.5 1.0 1.5 2.0
Size of Window / mean service time

0.0

10.0

20.0

30.0

40.0

M
ax

im
um

 N
um

be
r o

f E
ve

nt
s

Pr
oc

es
se

d
by

 a
ny

 L
P

Observed N = 1024
Predicted N = 1024
Observed N = 64
Predicted N = 64

Figure 3: Comparison of observed and predicted mean maximum events processed in a

window by any LP.

number of messages reprocessed per rollback. Our simulations have suggested that the

number of generations grows linearly in A, an observation that agrees with the analysis of

Eick et al. (1993). The number of messages reprocessed each rollback also increases linearly

in A, for the simple reason that increasing the window size introduces new events at the top

of the window to be rolled back along with the ones which were rolled back with smaller

windows. The average number of rollbacks per generation is also linear in A, because each

arrival message is assumed to cause the re-evaluation of all later messages. E[MN(A)] is at

least a cubic function of A, so that the cost per simulation time unit E[MN(A)]=A (whose

units are execution time per simulation time unit) is at least quadratic in A. This suggests

that there may be some A� minimizing this cost. Figure 5 con�rms this intuition. In fact, it

is interesting to note that A� appears to be slightly less than �s = 1. This too is in agreement

with the model of Eick et al., even though the models and costs are di�erent. We conclude

that A = �s is an excellent choice, and in the remainder presume this equality.

It turns out that the behavior of E[MN(�s)]=�s in N is an almost perfectly linear function

of logN in the range considered, with E[MN (�s)]=�s � logN+2:9. To incorporate the e�ects

of state-saving, we'll assume that the per-event cost of state-saving is a factor of �, so that

the cost of executing n events with attendant state-saving is �n. Note that this model does

12

0.0 0.5 1.0 1.5 2.0
Size of Window / mean service time

0.20

0.40

0.60

0.80

1.00

Fr
ac

tio
n

of
 C

om
m

itt
ed

 E
ve

nt
s

1024 LPs
64 LPs

Figure 4: Fraction of committed events as a function of A, for 64 and 1024 LPs.

not presume that state is saved each event; it only presumes that the aggregate state-saving

overhead amortized over events is �.

E[MN (A)] does not incorporate the cost of synchronization. To include these costs we

must consider how synchronization is performed in a computation of this type. A software

solution described by Nicol (1993a) has every LP engaging in synchronization activity once it

�nds itself apparently at the synchronization point. We could assume some synchronization

cost for each and every straggler message, however this seems excessive. Instead we'll assume

that the number of synchronizations are those one would incur by synchronizing at the end of

each generation; empirical evidence (Nicol, 1993a) suggests that each such synchronization

costs roughly twice that of a conventional synchronization. Our simulation studies show that

a window of width A = �s requires 2.5 generations on average, a �gure that is relatively

insensitive to the number of LPs. Taking B as the execution cost of a conventional barrier

synchronization the overall execution cost per unit simulation time given N LPs is

Coptim(N) � �(log2N + 2:9) + 5B: (3)

Note that our assumed synchronization cost structure does not a�ect the optimality of

A� = �s, since synchronization costs then grow linearly in A. Also note that B shows

13

0.0 0.5 1.0 1.5 2.0
Size of Window / mean service time

10.0

20.0

30.0

40.0

Ex
pe

ct
ed

 C
os

t p
er

 S
im

ul
at

io
n

Ti
m

e
Un

it
N = 1024 LPs
N = 64 LPs

Figure 5: E[MN(A)]=A as a function of A, for 64 and 1024 LPs.

no dependence on N . Asymptotically it must grow with log2N , however we presume that

the cost of executing an event is large enough to overshadow this dependence before N

becomes extremely large.

Now consider YAWNS.Nicol (1993) established that the average width of the conservative

window is at least �s
q
�=(2N) � 1:25�s=

p
N . In windows this small, the average maximum

number of events processed by any LP is no larger than 2, for large N it is much closer to 1.

Including the barrier synchronization, YAWN's cost per unit simulation time is no greater

than

Cyawns(N) =
(2 +B)

p
N

1:25
: (4)

One consequence of A� � �s is that for large N there is relatively little advantage to avoid

state-saving within the YAWNS conservative window, because the optimistic window is so

much larger. For instance, if N = 100, then only about 12% of a window avoids state-saving.

It costs very little to compute the conservative window, and so if convenient ought to be

done. However, the performance bene�ts from doing so are not large.

We may use equations (3) and (4) to compare the approaches, given values for overhead

costs. At a higher level we observe that YOW has an O(log2N) cost while YAWNS has an

14

4.0 6.0 8.0 10.0 12.0
Log (base 2) N

0.0

10.0

20.0

30.0

40.0

Al
ph

a

B = 0
B = 0.1
B = 1.0
B = 10.0
Alpha = 2

Figure 6: Function specifying LP threshold N� after which YOW is better than YAWNS.

O(
p
N) cost. For su�ciently large N , the optimistic approach will always achieve a lower

cost. How large must that N be? We depict this graphically in Figure 6, plotting the solution

(to �) of equation Coptim � Cyawns = 0, as a function of log2N and for various values of B.

Solutions � = �(N;B) < 1 are plotted as 1, since state-saving can never accelerate the cost

of executing an event. For any given value of �� and known value B, one can determine

the N� for which �� = �(N�; B), and determine that YOW is better than YAWNS for all

N � N�. Imagine that state-saving doubles the cost of executing an event. Plotting the

line � = 2 we look for its intersection with the various synchronization cost curves; N 's

associated with the intersection de�ne N�. For instance, if B = 0 then YOW is better for

N > 128. If B = 1:0 however, then YOW needs only N > 100, and if B = 10:0 it needs only

N > 40. YAWNS is clearly impacted more strongly by increasing synchronization costs, as

it synchronizes on the order of
p
N times more often than YOW.

The assumptions under which we've analyzed YAWNS show that if simulation time ad-

vances by exponentially distributed amounts and if only one LP is assigned to each processor,

then YAWNS has a relatively high cost. However, YAWNS performance is sensitive to both

of these assumptions. If an LP's service time is bounded below by
 > 0, then the size of a

YAWNS window at least
. This seemingly minor change of assumptions defeats the assured

15

asymptotic superiority of YOW, because it changes YAWNS O(
p
N) cost to O(1=
). The

relative performance of YAWNS and YOW depend primarily then on �, B, and
.

Next we show that by considering the e�ects of aggregating LPs onto processors, YAWNS

again circumvents YOW's assured superiority, even if service times are exponentially dis-

tributed. The reasoning is straightforward. Let N denote the number of LPs, P denote the

number of processors, and presume that each processor simulates N=P LPs. The average

size of a YAWNS window is y(N) = 1:25�s=
p
N ; the number of events each LP executes

in a window is Poisson with rate 2y(N). Since LPs are independent, the number of events

a processor executes each window is Poisson with rate �(N) = 2:5
p
N=P . If MP (�) is the

mean expected maximum of P Poissons with rate �, then YAWNS' cost per unit simulation

time per co-resident LP is

Dyawns(N) =

p
N

1:25
�
MP (�(N)) +B

N=P
:

Eick et al. study the asymptotics ofMP (r), showing that MP (r) � logP= log logP for small

r, and MP (r) � 2r for r =
(log P). �(N) increases unboundedly in N , implying that for

su�ciently large N

Dyawns(N) �
2�(N) +B

N=P

= 4 +
B

�(N)
:

The second term vanishes as N grows, showing that YAWNS' normalized execution cost per

LP is asymptotically constant.

The result above does not imply that YAWNS' normalized cost is asymptotically 4 be-

cause constants in the asymptotic analysis are missing from our expressions. However, Fig-

ure 7 plots the predicted cost (not asymptotic) as a function of log(N=P), assuming P = 16

and B = 0. It also plots the predicted performance of YOW, again assuming A = �s, under

the same values of N and P . State-saving overhead factors of � = 1; 1:2 and 1:5 are shown.

These �gures are obtained by computing appropriate convolutions of W , and �nding the

expected maximum convolved processor load. Since aggregation may change the relative

optimality for YOW of A = �s, we also computed costs assuming other window sizes. Di�er-

ences from the presented data were small. Assuming that synchronization costs contribute

little to the overhead cost under high loads, it is clear now that YAWNs can do better than

YOW under high degrees of aggregation, or when state-saving overhead is signi�cant.

It should also be noted that our model assumptions work against YOW in the aggregated

case. When LPs tend to communicate with other LPs on the same processor one may expect

advantages due to signi�cantly reduced communication costs. This is especially true in our

16

0.0 2.0 4.0 6.0 8.0 10.0
Log (base 2) LPs per Processor

2.0

4.0

6.0

8.0

10.0

Ex
. C

os
ts

pe
r U

nit
 S

im
. T

im
e p

er
 C

or
es

ide
nt

LP

Yawns
Alpha = 1.0
Alpha = 1.2
Alpha = 1.5

Figure 7: YAWNS and YOW normalized cost per unit simulation time under aggregation as

a function of log(N=P).

model because the recomputation cost due to delayed stragglers is consequential. However,

the assumption that messages are routed uniformly at random means that no such locality

is present in the model. Our costing assumptions remain valid in the aggregated case so

long as event processing costs are of the same order as communication and the window size

is small.

5 Conclusions

We have analyzed a simple model of parallel simulation, to assess the bene�t of adding

optimism to an existing conservative synchronization protocol, YAWNS. Our approach is

novel to the the problem area, and is relatively simple. We show how to compute approximate

probability distributions of processor workload. To these distributions we add overheads due

to state-saving, and synchronization. In addition, we consider the e�ects on performance

due to aggregating many LPs onto a processor.

The extension, YOW, remains window-based; our analysis predicts that there is some

optimally-size window, a prediction borne out by experiments. The window is relatively large

compared to YAWNS', but is still so small that on average a logical processor executes only

two events within it. Using this window size we construct equations predicting YOW's and

17

YAWNS' execution cost per unit simulation time, and observe that under the assumption

of one LP per processor, YOW is asymptotically better than YAWNS, as the number of

LPs grows. However, when we analyze performance allowing many LPs per processor we

�nd that YAWNS does better than YOW under moderate levels of aggregation, or when

state-saving costs are non-negligible.

Far-reaching quantitive conclusions are questionable for a model of this type. For both

YAWNS and YOW small changes in model assumptions will signi�cantly a�ect quantitative

results. Qualitatively though we may infer that if actual reprocessing costs resemble those

in our model and global synchronization costs aren't high, then it is likely that limiting

optimism is a good thing in a window-based framework. We also conclude that if probability

distributions driving simulation time advance have no lower support, then YAWNS will not

do well when the problem is sparse relative to the architecture. However, this problem

disappears for large problems where LPs are highly aggregated onto processors. Perhaps the

strongest conclusion we o�er is that performance of parallel simulations is more strongly a

function of state-saving, synchronization/communication costs, problem size, and degree of

aggregation than it is for the speci�c synchronization protocols. Synchronization methods

ought to be chosen after the problem is known, and to take advantage of the problem's

characteristics.

An open and important question remains, whether a window-based framework o�ers

better performance than a completely asynchronous one. While we have not addressed this

problem, we believe that extension of our analytic approach to the Gupta et al. model

assumptions may lead to the desired comparison. We also believe a more precise treatment

of the e�ects of communication delay is possible, which will lead to better understanding of

the e�ect the underlying architecture has synchronization behavior.

REFERENCES

Akyldiz, I.F., L. Chen, S.R. Das, R.M. Fujimoto and R.F. Serfozo 1992. Performance Anal-

ysis of Time Warp With Limited Memory. 1992 ACM Sigmetrics Conference

Ayani, Rassul 1989. A Parallel Simulation Scheme Based on Distances Between Objects.

Proceedings of the 1989 SCS Multiconference on Distributed Simulation, Volume 21 Num-

ber 2, 113-118. Society for Computer Simulation,

R.E. Bryant. Simulation if packet communication architecture computer systems. MIT-

LCS-TR-188, Massachusetts Institute of Technology, 1977.

Ayani, R. and H. Rajaei 1992. Parallel Simulation Using Conservative Time Windows.

Proceedings of the 1992 Winter Simulation Conference, pgs. 709-717, Dec. 1992.

18

Chandy, K.M. and J. Misra 1979. A Case Study in the Design and Veri�cation of Distributed

Programs. IEEE Transactions on Software Engineering, SE-5,5 May 1979, 440-452.

Chandy, K., and R. Sherman 1989. The Conditional Event Approach to Distributed Sim-

ulation. Proceedings of the 1989 SCS Multiconference on Distributed Simulation, pgs.

93-99, January, 1989.

Dickens, P. and P. Reynolds 1990. SRADS with Local Rollback. Proceedings of the 1990

SCS Multiconference on Distributed Simulation, 161-164, January, 1990,

Eick, S., Greenberg, A., Lubachevsky, B. and Alan Weiss, 1993. Synchronous Relaxation for

Parallel Simulations with Applications to Circuit-Switched Networks. ACM Transactions

on Modeling and Computer Simulation, Volume 3 Number 4, pgs. 287-314, Oct. 1993.

Felderman, R. and L. Kleinrock 1991. Bounds and Approximations for Self-Initiating Dis-

tributed Simulation Without Lookahead. ACM Transactions on Modeling and Computer

Simulation, Vol 1, No 4, Oct 1991, pp 386-406.

Fujimoto, R. 1990. Parallel Discrete Event Simulation. Communications of the ACM, Vol-

ume 33, Number 10, October 1990, 30-53.

Gupta, A., I. Akyldiz and R. Fujimoto 1991. Performance Analysis of Time Warp With

Multiple Homogeneous Processors. IEEE Transactions on Software Engineering. Volume

17, No. 10 pgs. 1013-1027, Oct. 1991.

Je�erson, D.R. 1985. Virtual Time. ACM Transactions on Programming Languages and

Systems, 7,3 (1985), 404-425.

Lubachevsky B. 1988. Bounded Lag Distributed Discrete Event Simulation. Proceedings of

the 1988 SCS Multiconference on Distributed Simulation, pgs. 183-191, January, 1988.

Lubachevsky B., A. Shwartz and A. Weiss 1989. Rollback Sometimes Works... If Filtered.

Proceedings of the 1989 Winter Simulation Conference. 630-639, December, 1989.

Lubachevsky, B. 1989a. Scalability of the Bounded Lag Distributed Event Simulation. Pro-

ceedings of the 1989 SCS Multiconference on Distributed Simulation 100-105, January,

1989.

Madisetti, V., D. Hardaker and R. Fujimoto 1992. The MINDIX Operating System for

Parallel Simulation. Distributed Simulation, SCS Simulation Series, Vol. 24, Num. 3,

pgs. 65-74, Jan. 1992.

19

Misra, J. 1986. Distributed Discrete-Event Simulation. Computing Surveys, Vol. 18, pgs.

39 - 64, March 1986.

Nicol, D. 1991. Performance Bounds on Parallel Self-Initiating Discrete Event Simulations.

ACM Transactions on Modeling and Computer Simulation, Volume 1, No.1, 1991.

Nicol, D.M. and R. Fujimoto 1994. Parallel Simulation Today. ICASE Technical Report #

92-62. To Appear in Annals of Operations Research, Nov. 1994.

Nicol, D. 1993. The Cost of Conservative Synchronization in Parallel Discrete Event Simu-

lation. Journal of the ACM, Vol. 40, Num. 7, pgs. 304-333, April, 1993.

Nicol, D.M., 1993a. Global Synchronization for Optimistic Parallel Discrete Event Simu-

lation. Proceedings of the 7th Workshop on Parallel and Distributed Simulation, pgs.

27-34., May, 1993.

Peacock, J.K, J.W. Wong and E.G. Manning 1979. Distributed Simulation Using a Network

of Processors. Computer Networks (1979), 44-56, North-Holland Publishing.

Reiher, P., R. Fujimoto, S. Bellenot, and D. Je�erson 1990. Cancellation Strategies in Op-

timistic Execution Systems. Proceedings of the 1990 SCS Multiconference on Distributed

Simulation, January, 1990.

Reynolds, P. 1988. A Spectrum of Options for Parallel Simulation. Proceedings of the 1988

Winter Simulation Conference,, pgs. 325-332, Jan. 1988.

Reynolds, P., Pancerella, C. and S. Srinivasan 1993. Design and Performance Analysis of

Hardware Support for Parallel Simulations. Journal of Parallel and Distributed Comput-

ing, Volume 18, No. 4, August 1993, pgs. 435-453.

Righter, R and J. Walrand 1989. Distributed Simulation of Discrete Event Systems. Pro-

ceedings of the IEEE, Vol. 77, No. 1 Jan. 1989.

Ross, S. 1983. Stochastic Processes. Wiley Series in Probability and Mathematical Statistics.

Published by John Wiley and Sons, Inc., 1983.

Sokol, L., D. Briscoe and A. Wieland 1988. MTW: A Strategy for Scheduling Discrete Sim-

ulation Events for Concurrent Execution. Proceedings of the 1988 SCS Multiconference

on Distributed Simulation, pgs. 169-173, Jan. 1988.

20

Steinman, J. 1991. SPEEDES: Synchronous Parallel Environment for Emulation and Dis-

crete Event Simulation. Proceedings of the SCS Western Multiconference on Advances

in Parallel and Distributed Simulation, Volume 23, No. 1, pgs. 95-103.

Steinman, J. 1992. SPEEDES: A Uni�ed Approach to Parallel Simulation. Proceedings of

the 6th Workshop on Parallel and Distributed Simulation, SCS Simulation Series, Vol.

24, No. 3, pgs. 75-84, Jan. 1992.

Turner, S. and M. Xu 1992. Performance Evaluation of the Bounded Time Warp Algorithm.

Distributed Simulation, SCS Simulation Series, Vol. 24, Num. 3, pgs. 117-126, Jan.

1992.

21

